Logarithmic Functions

For x > 0, a > 0, and $a \ne 1$:

$$y = log_a x$$
 iff $x = a^y$

 $f(x) = \log_a x$ is called a logarithmic function.

\ \ \ Ca	ε	
$log_2 32 =$		5
$log_3 1 =$		0
log ₄ 2 =		$\frac{1}{2}$
$\log_{10}\left(\frac{1}{100}\right) =$		-2

When the base is 10, the logarithm is a Common Logarithm.

If the base is not written, then it is automatically 10

log 100 = 2

When the base is e, the logarithm is a Natural Logarithm

$$log_e x = ln x$$

$$y = \ln x \text{ iff } e^y = x$$

$$\ln 1 = 0$$

$$\ln e = 1$$

$$\ln e^x = x$$

$$\ln x = \ln y \rightarrow x$$

$$x = y$$

$$\log_a 1 = 0$$

$$\log_a a = 1$$

$$\log_a a^x = x$$

$$a^{\log_a x} = x$$

$$\log_a x = \log_a y \rightarrow x = y$$

 $f(x) = a^x$ and $g(x) = log_a x$ are inverses of each other Their Graphs are reflections of each other through the line y = x

Assignment 127:

Page 203, #s 2, 6, 8, 12, 14, 18, 26, 29, 37, 40