1 Find the vertex for $f(x) = 2x^2 - 8x + 1$

The x-coordinate of the Vertex is $-\frac{b}{2a} = -\frac{-8}{2(2)} = \frac{8}{4} = 2$ To find the y-coordinate of the Vertex, we evaluate: f(2) = 2(4) - 8(2) + 1 = 8 - 16 + 1 = -7Therefore the coordinates for the Vertex is: (2, -7).

M

- 2 The above function does not have a maximum value, but it does have a minimum value. The minimum value of the function is -7.
- 3 The equation of the axis of symmetry for $f(x) = 2x^2 8x + 1$ is: x = 2.
- 4 Write the equation for the graph below in standard form.

	-		ļ			k	
]		

The Vertex is at (3, -4).

So far, we can start Vertex form with: $f(x) = a(x-3)^2 - 4$.

The number *a* represents the vertical stretch or vertical shrink.

We Notice that moving one unit right or left from the vertex requires a vertical climb of 2. Therefore a = 2.

Now the equation becomes: $f(x) = 2(x-3)^2 - 4$ Further, we get: $f(x) = 2(x^2 - 6x + 9) - 4 \rightarrow f(x) = 2x^2 - 12x + 14$

5 A Quadratic Function has x-intercepts at -5 and 3, with a Vertical Stretch of 3 and Reflected across the xaxis. Write the equation in standard form.

Using intercept form, we start with: f(x) = a(x+5)(x-3). Using the knowledge of the Vertical Stretch and Reflection in the x-axis, we get: f(x) = -2(x+5)(x-3). Now we Simplify: $f(x) = -2(x^2 + 2x - 15) \rightarrow f(x) = -2x^2 - 4x + 30$

6 Find the Vertex for the above Equation.

The x-coordinate for the Vertex is: $-\frac{b}{2a} = -\frac{-4}{-4} = -1$ So we evaluate: f(-1). f(-1) = -2(1) - 4(1) + 30 = -2 - 4 + 30 = 24. The Vertex is at (-1, 24)

114

Algebra 2 Assignment 114 Thursday October 1, 2015 Hour Name

NO Calculators

- 1 $f(x) = 3x^2 24x + 2$ Find the Vertex.
- 2 Write the equation for the graph below in Vertex Form.

••		·				
••	•	· •	\sim	•	•	•
••	•	· ł	$f \cdot \chi$	•	·	•
••		- P	•	١.	•	
••	•	- A	•	4	•	•
••	•	- A	•	٠Ļ	•	•
••	•	- H	•	٠¥.	•	•
÷.			•	. Y		

- 3 Convert your answer in #2 to Standard Form.
- 4 Write the Standard Equation for a Quadratic Function with x-intercepts at 9 and -2 and a Vertical Stretch of 10.
- 5 $f(x) = 2x^2 3x + 4$ must be Translated Left by 2 Units, then Translated down by 1 Unit, then Vertically Stretched by a factor of 5. Show each step of the Transformation.

G
а

b

- c
- 6 Graph on the Coordinate below showing The Vertex, and 3 other points. $f(x) = \frac{1}{2}(x+1)^2 3$.

					r			
••	•			•	ŀ		•	
••				•	ŀ		•	
••					ŀ		•	
-								
					_			
••					ŀ			
:	:	:	:	:	ţ	:	:	
	÷	:	÷	:	ł	:	÷	
••	:		:	:		:	:	