PC Notes

111

End Behavior - Leading Coefficient Test

1. When the leading term is Positive and of Even Degree,

```
then \lim_{x \to -\infty} f(x) \to +\infty and \lim_{x \to +\infty} f(x) \to +\infty
```

2. When the leading term is Negative and of Even Degree,

- 3. When the leading term is Positive and of Odd Degree, then $\lim_{x \to -\infty} f(x) \to -\infty$ and $\lim_{x \to +\infty} f(x) \to +\infty$
- 4. When the leading term is Negaive and of Odd Degree,

Real Zeros of Polynomial Functions:

If f is a polynomial function and a is a real number, the following statements are equivalent.

- 1. x = a is a zero
- 2. x = a is a solution of the equation f(x) = 0
- 3. (x a) is a factor of f(x)
- 4. (a, 0) is an x-intercept of the graph of f.

Find all zeros of $f(x) = x^3 - x^2 - 2x$ $f(x) = x^3 - x^2 - 2x = x(x^2 - x - 2) = x(x - 2)(x + 1)$ The zeros are 0, 2, -1

Find all zeros of $f(x) = -2x^4 + 2x^2$ $f(x) = -2x^4 + 2x^2 = -2x(x^2 - 1) = -2x(x + 1)(x - 1) = 0$ The zeros are 0, -1, 1

Repeated zeros → **Multiplicity**

For a polynomial function, a factor of $(x - a)^k$, yields a repeated zero x = a of multiplicity k.

- 1. If k is odd, the graph crosses the x-axis at x = a.
- 2. If k is even, the graph touches the x-axis at x = a, but does not cross the x-axis there.

Find all real zeros of $f(x) = x^5 - 3x^3 - x^2 - 4x - 1$

Since we have not learned to factor a quintic (5th degree Polynomial), we can use a graping calculator.

•	•	•	•	•	F .	· ·	•	•	•	•
·	·	·	•	A-	ŀ·	·	·	·	·	·
•	•	·	• 1	13.	ŀ·	·	•	•	·	•
·	·	·	зł	4	ł ·	·	·	·	·	·
			· -	- }	+ ·	- J				•
·	·	·	-1	- \	ł ·	ł	·	·	·	·
-						_				
_			_	_		_				
			ļ		ų :	1				
:	:	:	1	:	N :	-	:	:	:	:
:	:	:		:	N:	1	:	:	:	:
:	:		1	-	N:		:	:	:	
	· · ·]				

Using the Calculate Function, we find approximate zeros as: -1.86081, -0.254102, 2.11491

Find a polynomial function with zeros: $-\frac{1}{2}$, 3, 3 The obvious factors are $(x + \frac{1}{2})$, (x - 3), (x - 3)To avoid fractions we will use (2x + 1), (x - 3), (x - 3) f(x) = (2x + 1)(x - 3)(x - 3) $f(x) = (2x + 1)(x^2 - 6x + 9)$ $f(x) = 2x^3 - 12x^2 + 18x + x^2 - 6x + 9$ $f(x) = 2x^3 - 11x^2 + 12x + 9$

Find a polnomial with zeros: $3, 2 + \sqrt{11}, 2 - \sqrt{11}$

$$f(x) = (x - 3) \left[x - (2 + \sqrt{11}) \right] \left[x - (2 - \sqrt{11}) \right]$$

$$f(x) = (x - 3) \left[(x - 2) - \sqrt{11} \right] \left[(x - 2) + \sqrt{11} \right]$$

$$f(x) = (x - 3) \left[(x - 2)^2 - 11 \right]$$

$$f(x) = (x - 3)(x^2 - 4x + 4 - 11)$$

$$f(x) = (x - 3)(x^2 - 4x - 7)$$

$$f(x) = x^3 - 4x^2 - 7x - 3x^2 + 12x + 21$$

 $f(x) = x^3 - 7x^2 + 5x + 21$

Use the calculating feature to find the approximate values for the zeros. Approximate Zeros are: -3.740779, -0.6138804, 4.3546593

For the following Graphs:

- a. Is the Leading Coefficient Negative or Positive
- b. Is the Degree of f(x) Odd or Even
- c. List all of the Variable Factors
- d. Describe the left and right-hand end behavior of the graph of the polynomial function

1.

2.

Negative -	Odd	- (x	+ 3) x (x	- 4)
$\lim_{x \to -\infty} f(x)$	×	and	$\lim_{x \to \infty} f(x)$	∞

.

. . .

Assignment 111

02.02 Polynomial Functions of Higher Degree Page 112, #'s 15-32